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Watanabe (1966). The curvature of the broad Kikuchi 
lines shown in Fig. 4 can therefore be interpreted as the 
overlap of the broadened fine structures seen in Fig. 3. 
The interpretation is qualitative, however, and any 
quantitative analyses of the diffraction patterns must 
await further theoretical understanding of the dynamic 
diffuse scattering of electrons. 
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A simple alternative to the Ewald-von Laue dynamical theory of X-ray diffraction is described. Several 
of the more important features of dynamical diffraction, including anomalous transmission, diffraction 
in asymmetric Laue geometry, and the properties of the dispersion surface, are derived. The method 
involves the solution of a system of difference equations similar to those first solved by Darwin. The 
formalism of electromagnetic theory is avoided, and the result is achieved with no loss in rigor. In 
addition to its greater simplicity, the theory seems to be easier to modify to account for small devia- 
tions from perfect periodicity, which are difficult to account for in terms of the Ewald-von Laue treat- 
ment. 

Introduction 

The central problem of X-ray crystallography has tra- 
ditionally been, given a specific array of centers of 
scattering factor f ,  to combine the amplitudes and 
phases of the resultant scattered waves in order to 
recover the diffraction pattern associated with the 
array. Neither quantum mechanics nor electromagnet- 
ic theory is normally invoked. The crystallographer 
simply takes f to be the ratio of the wave scattered 
by an atom to that scattered by a classical electron, 
and leaves its computation to the theoretical physicist. 
All of the electromagnetic and quantum theory of the 
problem is contained in the calculation off.  

The Ewald (1916)-von Laue (1931) dynamical dif- 
fraction theory is a departure from this custom. Here, 
in order to obtain the total wave field inside a perfect 
crystal, one solves Maxwell's equations in a medium 
with a periodic, time dependent, complex dielectric 
constant. The treatment is elegant but rather involved. 

We here show that that is not necessary, that all 
of the features of dynamical diffraction including the 
anomalous aspects of the Borrmann effect are recover- 
able with the usual tools of X-ray crystallography. No 
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electromagnetic theory is used. The result is achieved 
by simply solving in Laue geometry the difference equa- 
tions first solved by Darwin (1914) in Bragg geometry. 

It has previously been shown (Borie, 1966) that at 
the precise Bragg angle for the symmetrical Laue case, 
such a procedure leads to the vanishing of the linear 
absorption coefficient and the anomalous behavior of 
the refractive index associated with the Borrmann ef- 
fect. In this paper we compute the wave field for an 
arbitrary direction of incidence. Diffraction in asym- 
metric Laue geometry is discussed. We examine the 
behavior of the wave field in the immediate vicinity 
of the Bragg reflection for the symmetrical Laue case, 
and we derive the properties of the dispersion surfaces. 
The result is identical with that of the Ewald-von Laue 
theory. 

Fresnel diffraction in transmission 

A preliminary to writing the Darwin difference equa- 
tions is to calculate the wave scattered by a single 
plane of scattering material. A family of such planes 
is then assembled to form a crystal, and the combina- 
tion of the amplitudes and phases of the scattered waves 
is expressed by the difference equations. 

This is conventionally done in reflection, or Bragg 
geometry (James, 1950), as illustrated in Fig. 1. The 
xy plane is populated by a uniform distribution of 
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classical electrons, n per unit area, and is irradiated 
by a point source at S. We compute the scattered wave 
at P. The rays SO = R and OP = r, in the x z  plane and 
making equal angles 01 with the z axis, define the 
shortest path length from S to P via the plane. For 
a path length via the point (x , y )  it is easy to show that 

X2COS201 _~_ y2 
Rxu = R + x sin 01 + 

2R 
and 

X2COS201 +y2 
rxu = r -  x sin 01 + 2r " 

In the above expressions x and y are assumed to be 
small compared with R and r so that terms beyond 
those quadratic in x or y may be neglected. The in- 
crease in path length, 7 = Rxu + r x u -  R -  r, after R is 
allowed to approach infinity so that the incident wave 
is plane, is then simply given by 

xZcos201 _}. y2 
y(x,y) = 2r " 

The electron plane may then be divided into Fresnel 
zones. The first zone is contained within the ellipse 
whose equation is 

2 xEcos201 + y2 
2 2r 

Standard Fresnel zone construction and Thomson scat- 
tering theory then give 

A = A o  in2J{" e2 [ 2hi  ] - -  exp - - r 
cos 01 mc 2 ~ " 

A is the net electric field at r, aside from a time factor, 
and A0 is that  of the incident plane wave just above 
the electron plane, jCr is a polarization factor, and is 
1 or cos(n-201) depending on whether the electric vec- 
tor of the incident wave is parallel to the y axis of 
Fig. 1, or in the x z  plane. If we replace each electron 
by an atom of scattering factor f ( n - 2 0 1 ) ,  we obtain 
for the ratio of the amplitude of the scattered plane 

S ~ . _  .-. z y . , ~ , / p  

At "01"~" "~ 0 1 ~ ' S ' - - . / / /  

N 

Fig.1. Schematic illustration of Fresnel diffraction from a 
single plane of scattering centers. 

wave just above the plane to that of the incident wave 
just before its encounter with the plane 

A n2oCf "eZ f (n -  201) 
Ao - iq = i cos0------~ me z 

iq is the complex single plane reflection coefficient. The 
factor i accounts for a phase advance of n/2 in the 
reflected wave relative to the incident wave. 

The problem of computing the scattered wave at 
P0, in the direction of the incident radiation, is parallel 
to the above discussed calculation. The resultant single 
plane coefficient in that case is 

n2 e2f(O) (1) 
igo = i cos01 mc 2 " 

The above results are independent of the way the 
atoms are distributed in the plane. The only require- 
ment is that any structure in the distribution be on a 
scale small compared with the dimensions of the Fres- 
nel zone, which for X-rays are of the order of 10 -4 cm. 

We now ask whether by distributing the atoms 
in the plane in a special way, we can cause still a 
third scattered wave to occur. In particular we ask 
whether we can cause a plane wave in the direction 
OP' ,  as shown in Fig. 1. O P '  lies in the x z  plane and 
makes an angle 02, as yet unspecified, with the z axis. 
For simplicity we take the three points P0, P, and P '  
to lie the same distance r from O. Then 

and 

X2COS202 _}. y2 
r~y = r  + xsin02+ 2r 

X2COS202-}-y2 + x(sin0x + sin02). 
7(x,y)= 2r 

This means that as x increases, the path length to P '  
increases very much more rapidly than to P or Po. 

Now suppose that we distribute the scattering centers 
in the x y  plane only along lines parallel to the y axis, 
equally spaced, al apart. Then the only relevant values 
of x are x = m a l ,  where m is an integer. And suppose 
that we choose 02 so that 

al(sin 01 + sin 02) = h2 (2) 

where h is an integer. Then 

X2COS202 _~_ y2 
y(x, y)  = 2r + hm2. 

This is identical with the path length change to P 
except that 01 is replaced with 02, and an integral num- 
ber of wavelengths are added on. Hence the phases 
combine at P '  exactly as they do at P. The rest of the 
derivation goes exactly as before. We may construct 
an elliptical pseudo-Fresnel zone for the direction OP' .  
It is a pseudo-zone because as we move from O out 
to the edge of the zone the path length increase may 
be very much greater than 2/2. But we have situated 
the scattering centers so that the path length change 
is exactly the same as it would be for reflection at 
angle 02, plus exactly an integral number of wave- 
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lengths. The resultant expression for the complex 
single plane transmission coefficient is 

n2,X" eZf(01 + 02) 
ig=i c o s 0  2 m c  2 (3) 

Here the polarization f a c t o r ~  is either 1 or cos(01 + 02). 
Note that though we have confined the scattering 
centers to lines in the xy plane, we have not required 
that all the electron density be so confined. The atomic 
scattering factor f accounts for the spatial distribution 
of the electron cloud, and with its use we may treat 
the atom as a point scatterer. 

We may now combine a family of such planes to 
form a crystal, as shown in Fig. 2, and ask what the 
conditions are for constructive interference in the di- 
rections 01 and 02. If the planes are spaced properly, 
reinforcement occurs in the 01 direction, and the stan- 
dard Darwin treatment for Bragg geometry results. We 
are here interested only in the Laue case, that is, re- 
inforcement in the 02 direction. In what follows we 
shall assume that the scattered waves q always interfere 
destructively, and we shall ignore them. 

The difference equations and their solution 

The planes of Fig. 2 are numbered 0 , 1 , 2 , . . . ,  r , . . .  Let 
Tr be the displacement of the wave in the direction of 
the incident radiation, defined by 01, just before the 
rth plane. To then is the displacement in free space 
just before the wave encounters the crystal. The phase 
retardation in T corresponding to a translation from 
the rth to the ( r+  1)th plane is 

2na2 cos0> (4) 
~Pl- 2 

It has been shown that scattered plane waves, in a 
direction 02 related to 0, by equation (2), will result 
from the interaction of the wave T with the planes. 
Let Sr be the displacement for the resultant wave in 
the 02 direction just after the rth plane. The phase 
retardation in S for a translation between planes is 

2na2 
~o2- 2 cos02. (5) 

Sr is composed of that part of Tr which is scattered 
in the 02 direction by the rth plane, plus that part of 
Sr-1 which is transmitted by the rth plane. Hence 

Sr = ig Tr + St-l(1 + igo) e x p ( -  g02). (6) 

Tr+l is that part of Tr which is transmitted by the rth 
plane plus that part of St-1 which is scattered in the 
01 direction by the rth plane: 

Tr+l= Tr(1 + igo) e x p ( -  i~01) 
+igSr-1 exp[-i(~pl+~02)]. (7) 

Equations (6) and (7) may be combined to obtain an 
equation in T only: 

Tr+2 = Tr exp[ -  i((pl +q92)][(ig)2-(1 +/go) 2] 
+ Tr+l(1 + igo)[exp(- i~01) + e x p ( -  i~02)]. (8) 

The general solution to a difference equation of this 
form is Tr= Cfl r where C and fl are constants. Its 
substitution into equation (8) yields 

f12--fl[2(1 + igo) exp(-- i~00) cos A~0] 
- e x p ( -  2i~Oo)[(ig)Z-(1 + ig0)2] = 0 .  

In the above, ~00=½(¢P1+~02) and A~=½(fPl-(P2). The 
solution to the quadratic equation in fl is 

fl= e x p ( -  i~00){(1 + igo)cos A~0 
+ i[g 2 + (1 + igo) 2 sinZA~0] ~}. (9) 

With fll corresponding to the positive choice of sign 
in (9), we have that Tr= CI~+C2fl~. With the boundary 
conditions that To= 1 and S-I =0,  there results 

(1 + igo) sin A~0 
Ct=½{1- [gE+(l +igo)2sinZAq)]~ } 

and 
C2=½11 + (_!_+igo)sinA~ ...... ! 

{ [g2+ (1 + ig0)2sin2a 0] + J • 

If the solution for Tr is substituted into equation (7), 
we obtain an expression for S. After some simplifica- 
tion there results 

r r=½ { 1 -  (1_+_/go) sin A(P I n ,  
[gZ + (1 + igo)2sinza~o], jr1 
{ (l+igo) sinA~o } 

+½ 1+ [gZ+(l+ig0)2sinZA~0]~ ,6~ (10) 

and 

St-1 e x p ( -  iep0) = ½ g [g2+( 1 + igo)2sinZA~o], fix 

-}2 g [g2+(1 +igo)EsinEAq~], fl~. (11) 

Internal diffraction in asymmetric Laue geometry 

It is apparent from equations (10) and (11) that there 
is a significant wave in the S direction at A~0 = 0. This 
situation corresponds to 0, = 02 and equation (2) simply 
reduces to Bragg's law for the (h00) planes, which from 
Fig. 2 are normal to the crystal surface. However, it is 

x 

q \ \ \  

2 

INCIDENT g 
BEAM 

Fig.2. Illustration of the combination of Fresnel diffracting 
planes to form a crystal. 
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also clear from (10) and (11) that Sr is 'turned on' not 
only near A~0=0, but as well at A~o=krc where k is an 
integer. We show that this corresponds to diffraction 
from (h/~0) planes, that is, diffraction in asymmetric 
Laue geometry. 

If we let unit vectors s and So define the directions 
of the S and T waves so that s .  a l = a l  sin 02 and 
So. al = - a l  sin 0x, equation (2) may be written 

a l .  ( - ~ )  = h .  (12) 

From the definition of Aq~ we have that 

d ~0 = ½(~Pl - ¢P2) = krc, 

which, with the aid of equations (4) and (5), may be 

written a E c o s 0 2  a2cos01 
--  k .  

2 2 

In terms of s and So this becomes 

s - s 0 _  k (13) 
a 2 "  ~ 

Equations (12) and (13) describe the components of 
the diffraction vector parallel to al and a2. Hence in 
terms of the reciprocal vectors bl and b2 it may be 
written s u So 

2 =hbl -kbz ,  

which is simply a statement of Bragg's law for the 
(h/~O) planes. 

The internal wave field in the the absence of diffraction 

If A~0 is not a multiple of n so that sinZAqg~g 2, the 
coefficients offl[ and fl~ in equation (11) are very small 
and the diffracted wave vanishes. The coefficient of 
fl[ in equation (10) is also very small, while that of 
fl~ is nearly unity. Hence (10) reduces to Tr=fl~ and 
equation (9) becomes 

flz=exp(-i~oo)((1 + igo)cos A~0 
- i ( 1  +igo) sin A~0}=exp(-itpl) exp(igo) (14) 

since go is sufficiently small that 1 + igo may be written 
exp(ig0). 

Thus the phase retardation experienced by Tr as r 
is advanced to r + l  is not ~01, as we would expect 
in free space, but tpl-go. We may think of this as a 
small advance in phase go of the wave front each 
time it passes through a plane of scattering material, 
as illustrated in Fig. 3. This causes the effective 
wave front, and hence the wave propagation vector, 
to be rotated through a small angle r/0, which gives 
rise to the normal refractive index n of the medium. 
From Snell's law 

n = sin 01/sin(01 + r/o)-~ 1 - r/o cot 01 

since t/o is very small. If &o is the defect from unity 
in n so that ~0 = 1 -  n, we have that 

&0=r/0 cot 01 • (15) 

~ / . / ~ N / F R E E  SP/~ 

WAVE F 
/ 

IN FREE SPACE / 

/ 

rl o ~ . - 3 .  / a= 

01 

EFFECTIVE PROPAGATION 
DIRECTION IN CRYSTAL '~ 

/ EFFECTIVE.... WAVE~ 
FRONTS IN CRY'STA[ 

Fig. 3. I l lustrat ion of  the relat ion be tween the phase  advance  on t ransmission th rough  a scattering plane and  the index of  refract ion.  



If z (Fig. 3) is the actual linear distance associated 
with the phase advance go we have that 

JTo- a2/sin 01 
or, since 2nz/2 =go, 

2n ] g02 sin 01 
r/o- - (16) 

Equations (1)and (16) may be substituted into (15) to ob- 
tain the usual expression for the refractive index defect. 

Near a Bragg reflection the phase advance may take 
on an anomalous value p, in which case (15) and (16) 
become 

d=r /co t  01 (17) 

and p2 sin 0x 
r / -  2rca2 (18) 

If go (or p) includes a small positive imaginary com- 
ponent it is clear from (14) that upon transmission 
through a plane the wave not only experiences a phase 
advance but is slightly attenuated as well. This attenua- 
tion is a consequence of the anomalous dispersion cor- 
rection t o f a n d  gives rise to the usual linear absorption 
coefficient. If near a Bragg reflection a value of p ob- 
tains which is real, then the absorption coefficient 
vanishes and anomalous transmission results. 

The existence of a wave point 

kb 

In this and subsequent sections we consider the be- 
havior of the wave field in the immediate vicinity of 
A~0=0, that is, near the condition for symmetrical 
Laue diffraction. 

In elementary theory, in which refractive indices are 
ignored, the usual Ewald construction is as shown in 
Fig. 4(a). A sphere of radius kB = 1/2 (the free space wave- 
length) is drawn about the Laue point L. The wave 
propagation vectors of the incident and diffracted waves 
at the Bragg angle 00 are then kB = LO and k~, = LH. 
Their difference is the reciprocal lattice vector OH. 

Fig.4(b) is an illustration of the actual situation in 
the immediate neighborhood of the Laue point. The 
incident radiation may deviate from 00 by a small angle 
A 0 so that 01 = 00-  A0. If that is so the propagation vector 
of the incident radiation is given by k rather than kn as 
shown. The magnitudes ofk  and kB are of course equal. 

Inside the crystal, because there is a refractive index 
defect 6 associated with the incident radiation, the 
magnitude of its propagation vector is no longer k but 
K =  k(1 -6 ) .  The line AB is a segment of a circle drawn 
about O of radius K, so that the terminal of K must lie 
somewhere on it. It may safely be drawn as a straight line 
because d ~ 1. Because of the refractive index the vector K 
is rotated relative to k through an angle r/. According to 
the relation (17), this places the terminal of K at W. The 
direction of K is thus defined by the angle Oo-AO+~l. 

The question to be explored in this section is, given 
the above description of K, how should the propaga- 
tion vector K' of the diffracted wave inside the crystal 
be drawn? We show that as a consequence of equations 
(10) and (11), it must be drawn from the same point W. 

It is clear from the construction of Fig. 4(b) that if 
K' does terminate at W, it will have associated with it 
a refractive index defect 6' different from d and a di- 
rection given by Oo+AO+rf. Of course, r/' must be re- 
lated to ~' by (17). From the geometry of Fig.4(b), 
d and d' must be related by 

kd=kd' +kAO sin 200. (19) 

(a) (b) k 
Fig.4. (a) The Ewald sphere of reflection. (b) Construction illustrating the geometry in the neighborhood of the Laue point L 

and the wave point W. 
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We have seen that because of refraction, the phase 
retardation in Tr as r is advanced to r +  1 is not (Px 
but • = ~0~ - p  = ~0o + A~0 - p  where 

A~0 = 2zca2 sin OoAO/2. (20) 

Similarly for St, ~ '  = ~Oo- A~o - p ' .  
But from equations (10) and (11), the same factors 

fll and/32 describe both the T and S waves. Hence we 
must have that • = ~' .  This fact relates p and p',  the 
phase advances experienced by T and S each time the 
wave fronts pass through a scattering plane: 

p '  = p  - 2A ~0. 

With the aid of relations (17) and (18), p and p'  may 
be expressed in terms of ~ and 6', and A~0 may be ex- 
pressed in terms of AO with equation (20). The result 
is just equation (19), which we set out to prove. Thus 
K and K' must always terminate at a common point 
W, called the wave point, near the Laue point. 

The dispersion equation 

As the angle of incidence is varied in the vicinity of 
00, the wave point moves in the neighborhood of the 
Laue point. We consider here the equation of its path. 

We may think of T or S as the combination of two 
waves, each with a different refractive index. If we 
write fix = B1 exp ( -  i~1) and ~2 = B2 exp( -  i~2), equa- 
tion (10) becomes 

Tr = CI(B1 exp( -  i ~ ) )  r + C2(B2 exp( -  i~b2)) r . (22) 

A similar expression for Sr may be written from equa- 
tion (11) with different C's but the same values of fll 
and f12. In equation (22), B~ gives the attenuation per 
plane and q~l the phase retardation per plane for one 
of the waves of which Tr is composed. The other com- 
ponent of Tr is similarly described by BE and ~2. Since 
the motion of the wave point in the vicinity of the 

Laue point depends on the behavior of the refractive 
index in that neighborhood, we are here concerned 
only with the values of the @'s. Specifically we consider 
the behavior of ~z. 

Because A~0, go, and g are small quantities, for pur- 
poses of this discussion equation (9) may be written 

f12 = exp(-- i~00)[1 + igo--i(g2+ zJ~02) ~] 
_ exp{ - i[~00 - go + (g2 + A~02) ~]}. 

Hence 
~2 = (P0-g0 + [g2 + A~o2] ~r. (23) 

If A@ is large compared with g, the value of the phase 
retardation per plane given by (23) reduces to ~00-g0 
+A~0= ~0x-g0, and the discussion leading to equations 
(15) and (16) follows. The refractive index defect for 
the f12 component of Tr is a constant, 80, independent of 
the position of the wave point. Thus the wave point must 
move along the line VQ of Fig. 5. A similar considera- 
tion of ill shows that the wave point for that component 
of the wave field moves along the asymptote MQ. 

The above described motion of the wave point breaks 
down in the neighborhood of the point Q, where 
zl~0=0. In that region we describe the position of the 
wave point in terms of the coordinates G0 and ~n which 
give its perpendicular distance from the asymptotes 
VQ and MQ, as shown in Fig. 5. Here the phase re- 
tardation per plane must be written ~01-p. This may 
be combined with equation (23) to give an expression 
forp :  p =  go--k A~o-- [A~o2--k g2] ~ . 

Equations (16) and (18) may be used to give 
= ~o-  d~ (24) 

where 2 sin 0o 
Avl=[(Aq~Z+g2)~-A~°] 2rca--------~ (25) 

From equations (15), (17), and (24) we have that 
= ~0-  Aq cot 00. 

"kS 

M 

ka 
Fig. 5. The coordinates C0 and ~ix of the wave point W relative to the asymptotes. 
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ka 

\ / K' 

/ / / \ !  l " ,  
/ /"A \ ' ,  I / \',, \ 

/ / /  \ ' ,  \ 

/ / /  \ ' , \  

Fig. 6. The dispersion surfaces for both states of polarization. 

Or, since from Fig. 5, G0 = k(~0-~), 

~o = karl cot 00. (26) 

Thus the distance NR must be kArl as shown. From 
equation (15), the distance VQ =krl0, and if the wave 
point is at W, then RQ must be kzlO. From the geo- 
metry of the figure it follows that 

~u = Go + kAO sin 200 = ~0 + 2kAO sin 00 cos 00. (27) 

Equation (25) may be used to eliminate Arl from (26): 

~o+ kAA~o cos 0o = k2 cos Oo(A92+g2).+.. 
2naz 2naz 

After squaring both sides and eliminating A~o in terms 
of AO with equation (20), there results 

~o(~o + 2kAO sin 00 cos 00)- kZ22c°sZO°g2 
4n2a 2 

From (27) the left side of the above equation may be 
written ~0~u. If the value of g quoted in equation (3) 
is used, there results 

NZ~.2fZe4j~f'2 
~o~n = 4nEmEc 4 (28) 

In the above, n/a2, the number of atoms per unit vol- 
ume, is written as N. This expression defines one branch 
of a hyperbola along which the wave point moves. Its 
other branch results from a consideration o f  ill parallel 
to the above. Equation (28) is identical with the result 
of the Ewald-von Laue theory (Batterman & Cole, 
1964), and represents a section through the dispersion 
surface. This section is illustrated in Fig. 6. Because 3 (  
may be either 1 (a state of polarization) or cos 200 
(n state) depending on the direction of the electric vec- 
tor, for unpolarized incident radiation two hyperbolae 
must be drawn as shown. If the imaginary component 
o f f  is independent of 20, a consideration of equation 
(9) shows that the linear absorption coefficient van- 
ishes only for the ~ branch of the a state of polariza- 
tion at the point A (Fig. 6). 

Discussion 

Some of the more important aspects of dynamical dif- 
fraction have been derived in terms essentially simpler 
and more familiar to the crystallographer, without 
comprising rigor. It seems clear that all of its features 
may be treated in terms of the Darwin difference equa- 
tions here described. In addition to its greater sim- 
plicity, the Darwin theory appears to be more flexible 
than that of Ewald and von Laue. Like band theory, 
the property of perfect periodicity is so fundamental 
to the Ewald treatment that it becomes extremely dif- 
ficult to treat small deviations therefrom. For example, 
the propagation of either electrons or electromagnetic 
waves in a disordered alloy is an extremely difficult 
phenomenon to describe in terms of Bloch functions 
or the Ewald dynamical theory. But for the Darwin 
theory, only a relatively minor modification of the 
single-plane Fresnel diffraction equations is all that is 
required. The Borrmann effect for diffraction from a 
superstructure reflection of an alloy with partial long 
range order may as well be treated in a straightforward 
way with Darwin theory, while with the Ewald treat- 
ment it seems to this writer that there would be rather 
formidable difficulties. The possibility of an electronic 
analog to Darwin dynamical theory is interesting. 

Much of the work described here is the result of an 
interesting and stimulating correspondence with Prof. 
B. E. Warren. 
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